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Analytical solutions are proposed in this paper to calculate the thermal impedance and transient
temperature in a semi-infinite body subjected to a heat spot. Two cases of uniform and non-uniform heat
flux are considered. These solutions are developed using integral transforms and are given in exact
expression forms, without any restrictive hypothesis. They include special functions such as Bessel,
Struve and hypergeometric functions. Many softwares to treat these functions are available (eg. Maple,
Mathematica and others). The solutions are validated through comparisons with available models
treating particular cases. The transient temperatures and impedances are presented for different spatial
distributions of the heat flux dissipated by the spot.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Spot heating occurs in many technical domains such as elec-
tronics, welding, laser beam, etc. In all these applications, the
temperature field should be known precisely. In the case of elec-
tronic components, the temperature should be not attain a critical
limit which may damage it. For welding, or laser treatment, the
temperature level should be controlled to obtain successful results.
Many studies are developed in the literature to treat spot heating.
Most of these studies are limited to steady state cases [1e7]. Such
cases do not take into consideration the spontaneous variation of
the heating power. A limited number of studies are concerned with
transient cases. Some authors have given approximations for the
thermal impedance [8e10] and the transient temperature [11].
These studies concern only the case of uniform heat source. Some
works concerning the study of thermal resistance and tempera-
tures for moving contacts have been developed [12e15].

Exact analytical solutions e based on the use of integral trans-
forms e are presented in this paper. These solutions express the
thermal impedance and the transient temperature evolution in
a body subjected to spot heating. The results are compared to
particular cases available in the literature. The impedance and
transient temperature are analysed and presented for different
physical and geometric parameters.
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2. General solution

The problem is represented on Fig. 1. A semi-infinite medium,
initially at zero reference temperature, is suddenly subjected to
a heat spot of radius a and density 4.

The governing equations of heat diffusion in the solid are:

v2T
vr2

þ 1
r
vT
vr

þ v2T
vz2

¼ 1
a

vT
vt

(1)

Tðr; z;0Þ ¼ 0 (2)
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�
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¼
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�
vT
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�
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¼ 0 and ðTÞr/N ¼ 0 (4)

The following Laplace and infinite Hankel transforms are
applied to equations (1)e(4):

T ¼ LfTg ¼
ZN
0

Te�ptdt

~T ¼
ZN
0

rJ0ðbrÞTdr (5)
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Nomenclature

a Radius of the spot, m
F Hypergeometric function
In Modified Bessel function of the first kind of order n
Jn Bessel function of the first kind of order n
L Laplace operator
Ln Modified Struve function of order n
p Laplace variable, s�1

R Thermal resistance, m2 K W�1

r; z Cylindrical coordinate, m
T Temperature rise, �C
t Time, s
Z Thermal impedance, m2 K W�1

Greek Symbols
a Thermal diffusivity, m2 s�1

b Hankel variable, m�1

4 Heat flux density, W m�2

l Thermal conductivity, W m�1 K�1

Subscript
1;2 Case 1 or 2
a Apparent area
av Average
c Contact (or Constriction)

Superscript
ap Approximated
* Dimensionless quantity
w Hankel transform
e Laplace transform
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Where: L is the Laplace operator, p the Laplace variable, J0 the
Bessel function of the first kind of order zero and b the Hankel
variable.

The transformed equations become:

d2~T
dz2

�
h
b2 þ p=a

i
~T ¼ 0 (6)

�l

�
d~T
�

¼ ~4 and ð~TÞz/N ¼ 0 (7)

dz z¼0

The solution of equation (6) with the boundary conditions (7)
can be written in the following form:

~T ¼
~4

l

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2þp=a

p
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ p=a
q (8)

The following Hankel and Laplace inverse transforms can be
used to obtain T:

T ¼
ZN
0

bJ0ðbrÞ~T db

T ¼ L�1fTg (9)

Where L�1 is the Laplace inverse operator.
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Fig. 1. The physical configuration.
The thermal impedance caused by the spot of heat can be
calculated using the following relation:

Z ¼ Tav � Ta
4avpa2

(10)

Where Tav is the average temperature of the heat spot area, Ta the
average temperature of the body apparent area ðTa ¼ 0; since
the reference temperature is zeroÞ and 4av the average heat flux on
the spot area with:

Tav ¼ 1
pa2

Za
0

Tðr; z ¼ 0Þ2pr dr

Ta ¼ 0

4av ¼ 1
pa2

Za
0

4 2pr dr

(11)

So:

Z ¼ 2
pla34av

ZN
0

~4J1ðbaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ p=a

q db (12)

In what follows, the explicit expression of the integral (12) is
given according to the flux 4 imposed by the spot.
3. Exact solution for frequent cases

Many cases can be considered, relative to the flux spatial and
temporal distribution. Two cases, usually applied in practice, will be
considered in this study:

- Case 1 e uniform flux: 4 ¼ 41ð41 is a constantÞ.
- Case 2 e non-uniform flux: 4 ¼ 42=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr=aÞ2

q
ð42 is

a constantÞ.

In the literature, the case 2 is commonly called ‘equivalent
isothermal spot’. It corresponds to a uniform spot temperature in
the steady state regime.

In what follows, solution details for the temperature and the
thermal impedance are presented using the following dimension-
less parameters:

p* ¼ pa2=a; Z* ¼ Zla; t* ¼ at=a2:
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3.1. Case 1 e uniform heat flux 4 ¼ 41 ð41 is a constantÞ

Applying Laplace and Hankel integral transforms to the flux
yields the following expression for ~4:

~41 ¼ 41
aJ1ðbaÞ

pb
(13)

where J1 is the Bessel function of first kind of order one.
Combining equations (13) and (12) leads to the expression of

thermal impedance, such that:

Z*1 ¼ 2
p

ZN
0

J21ðbaÞ
b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbaÞ2þp*

q db (14)

The integration in the above equation can be written under the
following form [16]:
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Where L1 is the modified Struve function of order one, I1 the
modified Bessel function of first kind of order one and F the
hypergeometric function. All these special functions are available in
softwares such as Maple, Mathematica and others.

When p ¼ 0 ðie:when t/NÞ expression (15b) yields the steady
state thermal constriction resistance:Rc;1 ¼ Z1ðp ¼ 0Þ ¼ 8=ð3p2laÞ
y0:2702=ðlaÞ.

An approximation for equation (14) has been proposed in the
literature by considering the asymptotic cases: p ¼ 0 and p/N

[8,9]. The approximated solution Zap1 is given by:

Zap1 ¼ 8=
�
3p2la

	
1þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pa2=a

p
=ð3pÞ

Zap
*

1 ¼ 8=
�
3p2	

1þ 8
ffiffiffiffiffi
p*

p
=ð3pÞ

(16)

The evolution of Z*1 e equations (15a) or (15b) e and Zap
*

1 e

equation (16) e is given on Fig. 2. The maximum difference
between the two solutions is about 11%.
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Fig. 2. Evolution of Z1 as a function of the Laplace variable p.
The transient surface temperature can be calculated from
equation (8) after replacing ~4 by its expression given by (13) as

T1ðr;0; tÞ ¼ 41a
l

ZN
0

J1ðbaÞJ0ðbrÞL�1

2
64 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
3
75db (17)

Putting t* ¼ ta=a2 and T* ¼ T=ð41a=lÞ, we obtain:

(i) The temperature at the spot centre ðr ¼ 0Þ:
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(ii) The temperature at the external contour of the spot ðr ¼ aÞ
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(iii) The average value:
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All the temperatures increase rapidly and attain their steady
values in about t*y10 (Fig. 3). The asymptotic values of these
temperatures can be calculated from equations (18)e(20) with:
t*/N. We get:

(i) T*1ð0;0;NÞ ¼ 1

(ii) T*1ðr ¼ a;0;NÞ ¼ 2=py0:6366

(iii) T*1;avðNÞ ¼ 8=ð3pÞy0:8488.

Beck et al. [11] have proposed some approximations to calculate
the transient temperature in the caseof a uniformheat source. Table1
compares the average temperature of the spot between the approx-
imation given by these authors for short time and the exact solution
given by equation (20). The results are in excellent agreement.
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Fig. 3. Evolution of dimensionless surface temperature as a function of time (Case 1).



Table 1
Comparison of average temperatures between the exact solution (20) and the
approximation given in the Ref. [11] for short time.

t* T*
1;av t* T*

1;av

[11] Equation (20) [11] Equation (20)

0.01 0.10647976 0.10647969 0.06 0.23850180 0.23848918
0.02 0.14687698 0.14687651 0.07 0.25439491 0.25437495
0.03 0.17641618 0.17641458 0.08 0.26877428 0.26874463
0.04 0.20034346 0.20033969 0.09 0.28192056 0.28187854
0.05 0.22069115 0.22068382 0.1 0.29403820 0.29398086
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Fig. 5. Evolution of dimensionless surface temperature as a function of time (Case 2).
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3.2. Case 2 e non-uniform heat flux 4 ¼ 42=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðr=aÞ2

q
ð42 is a constantÞ

This distribution is called ‘equivalent isothermal spot’ since it
corresponds to the steady state uniform temperature.

The application of Laplace and Hankel transforms to the flux
distribution over the spot area yields ~42 under the following form:

~42 ¼ 42
a sinðbaÞ

pb
(21)

Combining equations (21) and (12) leads to the dimensionless
expression of the thermal impedance Z*2 ¼ Z2la as a function of
p* ¼ pa2=a:
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Fig. 4 shows the evolution of Z*2 and Z*1 with the dimensionless
Laplace variable p*. It can be seen that Z*2 is systematically less than
Z*1. When p/0 (ie. When t/N: which corresponds to the steady
state situation) equation (23) yields the following known value:
R*c;2 ¼ Rc;2la ¼ Z*2ðp* ¼ 0Þ ¼ 1=4 ¼ 0:25. This value is slightly
less than that of uniform flux case, previous given as:
R*c;1 ¼ Rc;1la ¼ Z*1ðp* ¼ 0Þ ¼ 8=ð3p2Þ ¼ 0:2702. The difference
between the two cases is about 8%.

The dimensionless transient temperatures, T*
2 ¼ T2=ð42a=lÞ, at

the spot surface can be written as follows:

(i) for r ¼ 0
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(ii) for r ¼ a
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(iii) the average value
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As shown on Fig. 5, all temperatures increase rapidly to attain
a unique value: T*2ð0;0;NÞ ¼ T*2ða;0;NÞ ¼ T*

2ð0;0;NÞ ¼ p
2. The

three temperatures become very similar at t* ¼ 2. This means that
the spot temperature becomes nearly uniform for t* � 2.

4. Conclusions

Analytical exact solutions to calculate the thermal impedance
and the transient temperature due to spot of heat on semi-infinite
body are developed in this paper. The method is useful for physical
applications such as laser beam, welding, electronic components
junctions, thermal contacts between solids through asperities or
others, rapid transient process (eg. Thermal projections), etc. These
solutions do not necessitate any numerical computation, often
difficult to obtain.

Numerical values are obtained rapidly, when the solutions are
programmed using softwares, such as Maple or Mathematica for
example. The method can be also extended to flux evolution other
than those presented in this paper.

References

[1] J.P. Bardon, Introduction �a l’�etude des r�esistances thermiques de contact.
Revue G�en�erale de Thermique, France 125 (1972) 429e447.

[2] A. Degiovanni, C. Moyne, R�esistance thermique de contact en r�egime perma-
nent. Influence de la g�eom�etrie du contact. Revue G�en�erale de Thermique,
France 223 (1989) 446e452.

[3] N. Laraqi, A. Baïri, Theory of thermal resistance between solids with randomly
sized and located contacts. International Journal of Heat and Mass Transfer 45
(20) (2002) 4175e4180.

[4] J.P. Bardon, Heat transfer at solidesolid interface: basic phenomenon,
recent works, in: Proceedings of Eurotherm, Nancy, France, 3, 1988,
pp. 39e63.

[5] N. Laraqi, A. Baïri, L. Segui, Temperature and thermal resistance in frictional
devices. Applied Thermal Engineering 24 (17) (2004) 2567e2581.

[6] B. Bourouga, V. Goizet, J.P. Bardon, Le contact thermique pi�ece-outil lors d'une
op�eration de forgeage �a chaud: validation de l'hypoth�ese de r�esistance ther-
mique de contact et influence de la loi de comportement de la pi�ece. Inter-
national Journal of Heat and Mass Transfer 44 (21) (2001) 4107e4117.

[7] A. Baïri, J.M. Garcia-de-Maria, N. Laraqi, Effect of thickness and thermal
properties of film on the thermal behavior of moving rough interfaces.
European Physical Journal Applied Physics 26 (1) (2004) 29e34.



N. Laraqi / International Journal of Thermal Sciences 49 (2010) 529e533 533
[8] A. Degiovanni, Imp�edance de constriction. Revue G�en�erale de Thermique,
France 34 (406) (1995) 623e624.

[9] H. Mnif, Th. Zimmer, J.L. Battaglia, S. Fregonese, Analysis and modeling of the
self-heating effect in SiGe HBTs. European Physical Journal Applied Physics 25
(2004) 11e23.

[10] A. Degiovanni, A.-S. Lamine, C. Moyne, Thermal contacts in transient states:
a new model and two experiments. Journal of Thermophysics and Heat
Transfer. 6 (2) (1992) 356e363.

[11] J. Beck, K. Cole, A. Haji-Sheikh, B. Litkouhi, Heat conduction using Green's
functions. Hemisphere (1992).

[12] J.G. Bauzin,N. Laraqi, Simultaneousestimationof frictional heatfluxand two thermal
contactparameters for slidingsolids.NumericalHeatTransfer45 (4) (2004)313e328.
[13] M. Amara, V. Timchenko, M. El Ganaoui, E. Leonardi, G. de Vahl Davis, A 3D
computational model of heat transfer coupled to phase change in multilayer
materials with random thermal contact resistance. International Journal of
Thermal Sciences 48 (2009) 421e427.

[14] N. Alilat, A. Baïri, N. Laraqi, Three-dimensional calculation of temperature in
a rotating disk subjected to an eccentric circular heat source and surface
cooling. Numerical Heat Transfer 46 (2) (2004) 167e180.

[15] N. Laraqi, N. Alilat, J.M. Garcia-de-Maria, A. Baïri, Temperature and division of
heat in a pin-on-disc frictional device e exact analytical solution. Wear 266
(7e8) (2009) 765e770.

[16] Prudnikov, Brychkov, Marichev, Integrals and Series, vol. 3, Gordon and Breach
Sci. Publishers, 1986.


	Thermal impedance and transient temperature due to a spot of heat on a half-space
	Introduction
	General solution
	Exact solution for frequent cases
	Case 1 - uniform heat flux phiv=phiv1(phiv1isaconstant)
	Case 2 - non-uniform heat flux phiv=phiv2/1-(r/a)2(phiv2isaconstant)

	Conclusions
	References


